NetVLAD: CNN architecture for weakly supervised place recognition

Relja Arandjelović, Petr Gronat, Akihiko Torii, Tomas Pajdla, Josef Sivic [CVPR 2016]

Presentation by: Kent Sommer (소머켄트)

Outline

- 1. Review / related work
- 2. Overview of approach
- 3. Issues with approach
- 4. Results
- 5. Conclusions and Quiz!

- Has gained lots of attention recently
 - Computer Vision and Robotics Communities
 - Useful for:
 - Localization for many autonomous robotic tasks
 - Localizing old images (no geo-tags available)
- Usually viewed as an instance retrieval task
 - Some query image location is estimated by matching the most similar images in a database with images of known location

- Challenges:
 - Appearance changes
 - Seasonal / weather
 - Lighting
 - Occlusions (construction, cars, trees, etc.)

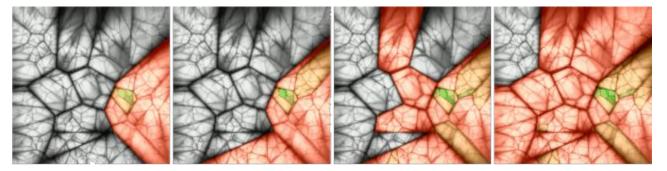
- Challenges:
 - Viewpoint changes
 - Images can be taken from anywhere

- Challenges:
 - "Big" data
 - Database of images can become unwieldy extremely quickly, how can we scale to world-wide localization?

- Related work:
 - Two main categories:
 - Non-learning based
 - Local features (SIFT, ORB, SURF, etc.)
 - Learning based (again two main categories)
 - Learning for auxiliary task
 - Ex: distinctiveness of local features
 - Learning on top of hand-engineered descriptors (cannot be tuned for target task)

Visual Place Recognition Related Work

- City-Scale Location Recognition
 - Partnership between Georgia Tech and Microsoft Research
 - With careful selection of vocabulary and use of a vocab tree -> can increase database size by 10X



The tree search algorithm considers the N best nodes at each level (left to right N = 1, 2, 5, 9). Cells are coloured from red to green according to the depth at which they are searched, while gray cells are never searched.

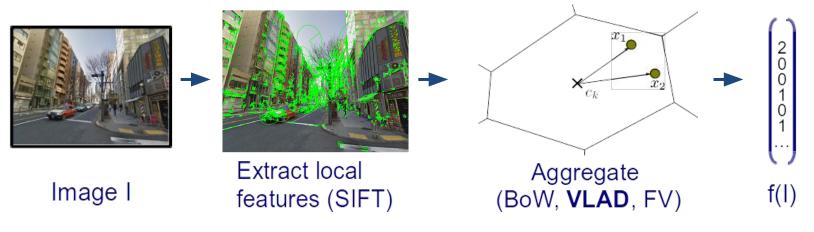
Visual Place Recognition Related Work

- 24/7 place recognition by view synthesis
 - Utilizes view synthesis to render virtual views directly from Google street-view panoramas and associated depth maps
 - Based on intuition that matching with large appearance changes is easier when view is the same

(c) Synthesized view

(d) Locations on the map

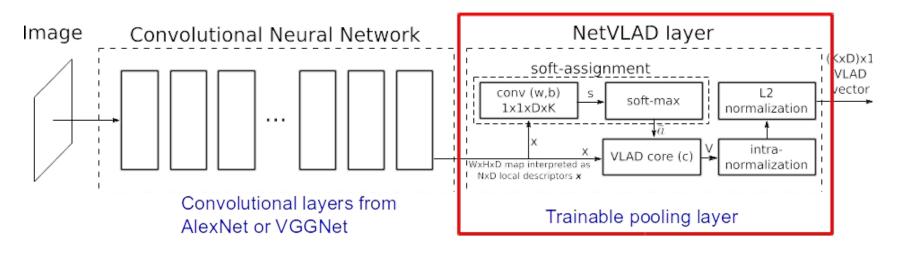
- Issues with local features
 - Main goal is matching local image patches
 - Not built with image retrieval in mind (not optimized for target goal)
- Issues with CNN features
 - CNN features are treated as black box image descriptor extractors



Can an end-to-end CNN help?

- Challenges for approach
 - What does a good end-to-end CNN architecture for place recognition even look like?
 - How can a sufficient amount of training data be gathered for this task?
 - What is an appropriate loss function for end-to-end training?

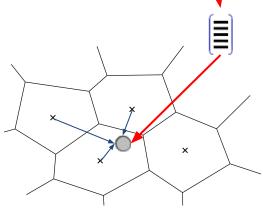
- What does a good end-to-end CNN architecture for place recognition even look like?
 - New trainable generalized NetVLAD layer based on the Vector of Locally Aggregated Descriptors!
 - Aggregated representation is eventually compressed using PCA to get final descriptor



• What does a good end-to-end CNN architecture for place recognition even look like?

soft assignment of desc. *i* to cluster k

$$V(:,k) = \sum_{i=1}^{N} \frac{e^{w_k^T x_i + b_k}}{\sum_{k=1}^{\prime} e^{w_{k'x_i + b_{k'}}^T (x_i - c_k)}}$$



• What does a good end-to-end CNN architecture for place recognition even look like?

Decouple assignment $(w_k b_k)$ from anchor point c_k

15

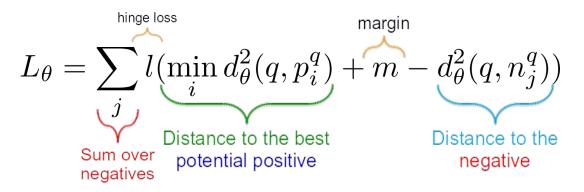
$$V(:,k) = \sum_{i=1}^{N} \frac{e^{w_k^T x_i + b_k}}{\sum_k' e^{w_{k'x_i + b_{k'}}' (x_i - c_k)}}$$

- How can a sufficient amount of training data be gathered for this task?
 - Collect images of the same place at different viewpoints over time using Google Street View Time Machine
 - Data is available but only weak supervision
 - GPS can only give definite negatives not definite positives!



- What is an appropriate ranking loss function for end-to-end training?
 - Inspired by triplet loss as in [1]
 - Can be optimized with Stochastic Gradient Descent

For a tuple (q, $\{p_i^{\,\mathsf{q}}\},\,\{\!n_j^{\,\mathsf{q}}\!\}\!)$:



Equations source: <u>http://www.di.ens.fr/willow/research/netvlad/</u>

17

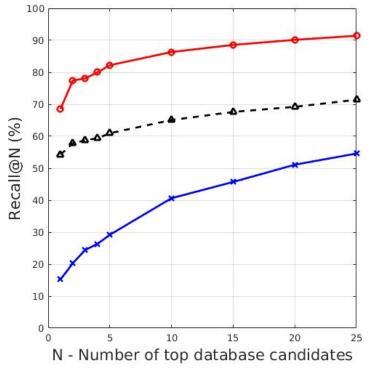
[1]: J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen, and Y. Wu. Learning fine-grained image similarity with deep ranking. In CVPR, pages 1386–1393, 2014

- Weaknesses with overall approach
 - Only weakly supervised, so better results would be expected with stronger supervision (manual labor tradeoff)
 - Stronger supervision could be provided through definite positives
 - Uses triplet inspired ranking loss
 - Training is long (all triplets used)
 - Training is not fully representative (subset of dataset)

- Datasets tested against
 - Pittsburg [torii et al. 13]
 - Database: 250k images from Street View
 - Queries: 24k images from Street View at other times
 - Tokyo 24/7 [Torii et al. 15]
 - Database: 76k images from Street View
 - Queries: 215 images from mobile phones

DB Image

• State of the art result on all datasets



Trained NetVLAD

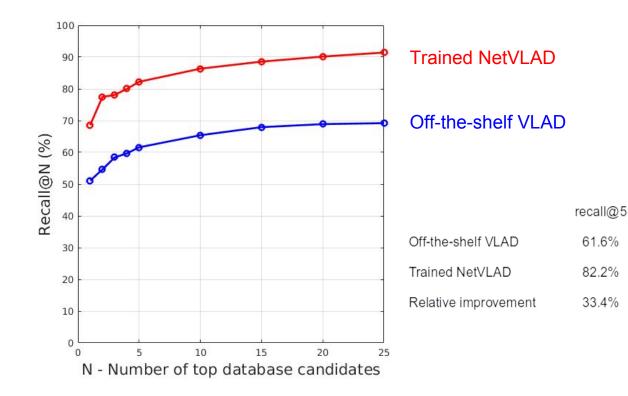
RootSIFT+VLAD+whitening [Torii et al. CVPR'15]

Off-the-shelf Max Pooling [Razavian et al. ICLR'15]

recall@5

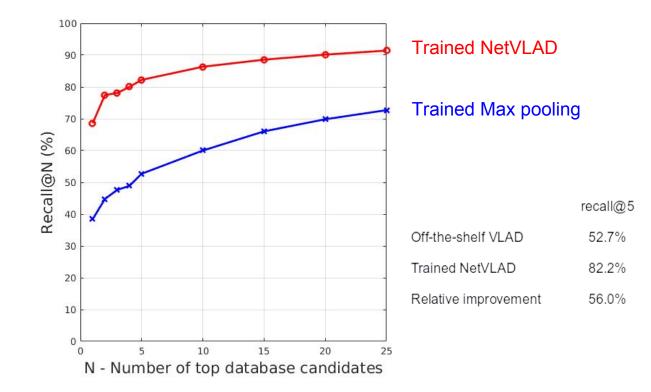
Previous state-of-the-art	60.9%
Trained NetVLAD	82.2%
Relative improvement	35.0%

• End-to-end training is crucial!



ΚΔΙΣΤ

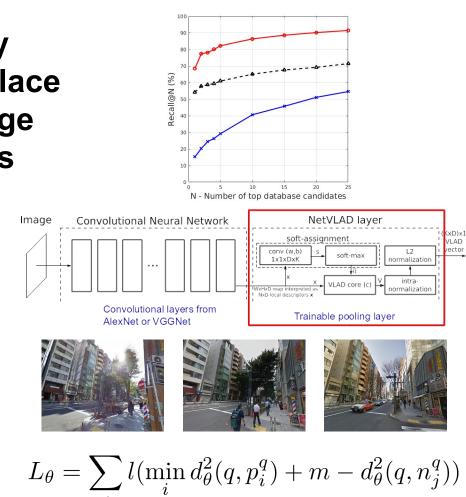
• NetVLAD is significantly better than Max pooling



- Tested on related task: image/object retrieval
 - Sets new state-of-the-art for compact image representations (256-D) on all 3 datasets

Method	Oxford 5k (full)	Oxford 5k (crop)	Paris 6k (full)	Paris 6k (crop)	Holidays (original)	Holidays (rotated)
Jégou and Zisserman CVPR14		47.2			65.7	65.7
Gordo et al. CVPR12					78.3	
Razavian et al. ICLR15	53.3		67.0		74.2	
Babenko and Lempitsky ICCV15	58.9	53.1				80.2
NetVLAD off-the-shelf	<u>53.4</u>	55.5	64.3	67.7	82.1	86.0
NetVLAD trained	62.5	63.5	72.0	73.5	79.9	84.3

- Conclusions / Summary
 - State-of-the-art on place recognition and image retrieval benchmarks
 - Trainable NetVLAD pooling layer
 - Street View Time Machine
 - Weakly supervised ranking loss



QUIZ!

1. Why is NetVLAD considered weakly supervised?

- a. GPS only gives definite negatives
- b. Uses Soft Assignment
- c. GPS only gives definite positives
- d. Uses Triplet Loss
- 2. What is being done while learning anchor point (Ck) for definite negatives?
 - a. Maximise distance between descriptors
 - b. Minimise angle between descriptors
 - c. Minimise distance between descriptors
 - d. Maximise angle between descriptors

"There are 2 hard problems in computer science: caching, naming, and off-by-1 errors"

